CodeBot Python Code By Mission

Mission 2 — Introducing CodeBot

Import from botcore
only leds functions

from botcore import leds

Turn on one user LED

leds.user num(©
ST L — parameters are (LED number 0-7, True=on or False=0ff)

Line sensor LED

leds.1ls num(@,
— parameters are (LED number 0-4, True=on or False=off)

Mission 3 — Time and Motion (Objectives 1-6)

CodeSpace Debugger

¥ DEBUG then use the = STEP IN button to step through your code|

Import a delay

from time import sleep

Use sleep()

sleep(1.0
— will sleep (amount of time in seconds)

Define a variable

delay = 1.0

(define variables at the top of the code, just under import statements)

Use a variable with
sleep()

sleep(delay)

Turn off an LED

leds.user_num(2,

Turn on three types of
LEDs

User LEDs (middle of the bot)
Line sensor LEDs (across the front)
Proximity sensor LEDs (one on each side)

leds.user_num(®,
leds.ls _num(@,

leds.prox_num(®,

Use binary
designation for
turning on LEDs

leds.user(@bl0161010)

leds.1s(©b11111)

- 0b for binary, then 0=0ff, 1=on for each LED

Mission 3 — Time and Motion (Objectives 7-9)

Import entire library

botcore

— *is a wildcard, which means everything

Turn on motors

motors.enable()
— must be done before motors will turn and wheels move

Power a motor

motors.run(LEFT, 50)

— will turn left wheel forward at 50% power

motors.run(RIGHT, -58)

— will turn right wheel backward at 50% power

Turn off motors

motors.enable(

Mission 3 — Time and Motion (Objectives 10-11)

Returns Boolean value
button was pressed

buttons.was pressed(©
ot —P N { } — checks button 0, returns True (pressed) or False (not pressed)

Use button press in
branching

buttons.was_pressed(@e

buttons.was pressed(1):

Mission 4 — Animatronics (Objectives 1-5)

Infinite loop

Updating a variable

n led = n_led + 1

Use debugger to view
variables

Open the
console panel
while debugging

Reset a variable to
stay within a range

n led = n led + 1
3:

n led = o

Break out of a loop

Increment

count + 1

_guests + 1] count

Turn on LED using a
variable

leds.ls num(n guests,

Mission 4 — Animatronics (Objectives 6-12)

Play a tone on the
speaker

spkr.pitch(440)

sleep(@.1
P () the (argument) is the pitch frequency

Turn off the speaker

spkr.off()

Debounce a button
press

buttons.was pressed(e)

While loop

count < 10: . .
(will iterate, or repeat, 10 times if count starts at 0)

Import random library

random randrange

Get a random number
within a range

randrange (160, 1000)

Define a function

flashLEDs():
leds.user(8b11111111)
sleep(©.5)
leds.user(0b000oBOON)
sleep(©.5)

note(freq, duration):
spkr.pitch(freq)
sleep(duration)
spkr.off()
sleep(0.05)

Call a function

flashLEDs()

note(F4, ©.4)

Mission 5 - Fence Patrol

Read a line sensor

l1s.read(num)

val = ls.read(n)
(returns a value between 0 and 4095)

Display the value of a
variable in the console

Assign a Boolean
result of a comparison
to a variable

Use the Boolean
variable in code

threshold

is_detected

val < threshold
leds.1ls num(®, is detected)

Detection

Dark line on light surface — use val > threshold
Light line on dark surface — use val < threshold

Use a comparison
with a while loop and
use the control
variable as an
argumentina
function call

detect line(n)
n=n+1

Wait loop
(safe driving)

buttons.was pressed(0):

Return statement

Call to a function that
has a return

hit = scan_lines() detect_line(count):

Use a variable to turn
on LEDs

leds.useF(line_count)

line_count will be from 0 to 255

Wrap-around the
line_count variable for
binary numbers

line count = line count + 1

line count == 256:
line count = @

Mission 6 - Line Followe

-

Create a list

Update a specific
value in a list

Use a list with LEDs

vals = check lines(threshold)
leds.1s([s] i leds.1s{vals)

Botcore line sensors
function (similar to
check_lines) but faster

vals = ls.check(thresh, is reflective)
leds.1s(vals)

Is.check() takes 2 parameters
It has a second parameter is_reflective that conirols whether "detected" means the sensor is
> thresh OF < thresh.

It Nreturns a rather than a \list.

Using or (logical
operator)

vals[1] vals[2] VET ELE

can have two or more conditions;
if any of the conditions are true, the statement will evaluate to true

Comparing with a
tuple

Code needed to
change a global
variable inside a
function

Built-in math
operations

Mission 7 - Hot Pursuit

Read the proximity
sensors

prox.detect()

returns a tuple (left, right) with values True or False

vals = prox.detect()

left detected = vals[@]
vals[1]

right detected =

Index values: 0 = left 1 = right

Proximity LEDs

= prox.detect()

leds.prox(p)

Use parameters

P = prox.detect(power, threshold)
Power is the “bot flashlight” with settings from 1 to 8 (high power)
Threshold is the sensitivity level, with settings from 1 to 100 (how much light is needed to detect)

Another built-in
function that finds the
ideal thresh for a
given environment

(num_samples, power, range_low, range_high)

Toggle the motors on
and off — can be used
with a button press to
turn on/off the motors

go_motors
go_motors

not go _motors

go_motors not go motors

Mission 8 - Navigation

Read a wheel encoder

val = enc.read(side)

Compare a state;
Uses the = (not
equals) comparison
operator

slot = sense_slot()

if enc_state != slot:

Define a list of
counters, initializing to
0

enc_count = [8,

Increment a list of
counters

enc_count[LEFT] = enc_count[LEFT] + 1

enc_count[RIGHT] + 1

enc_count[RIGHT] =

Constant for pi from
the math module

import math
WHEEL DIA = 66.5
WHEEL_CIRC = (math.pi * WHEEL_DIA)

Copy a list (not make a
reference)

enc_count

Make a new variable
that will reference the
same list

enc_count

Debounce the button
press

buttons.was_pressed(@)

while
it buttons.was pressed(0):

break

Marks the passage of
time in milliseconds;
the counter starts at 0
when the device boots
and keeps count up
while it is running.

Diff gives the
difference between
start and stop

import time

start = time.ticks ms()

t stop = time.ticks _ms()
t diff

print("That took ", t diff, " milliseco

time.ticks diff(t_stop, t_start)

nds!™)

Feedback loop

Slower than desired
gives a positive err,
increase power

err = (target speed - cur speed[LEFT]

power[LEFT] = power[LEFT] + err
motors.run(LEFT, power[LEFT])

) * FEEDBACK_PWR

Delay in milliseconds

Set a default
parameter

drive(cm, speed,

=[+1, +1]):

Mission 9 - All Systems Go!

Built-in function that
measures power
supply voltage
(battery or USB)

system.pwr_volts()

Returns the float power supply voltage; can come from USB or battery pack, depending on power switch

Returns an integer for
which power source is
being used.

on_usb = system.pwr_is ush()

Returns 1 for USB, 0 for battery pack

Turn on power LED

leds.pwr()

activates the red LED just above the power switch

Add a value to a list

samples.append(temperature)

Empty a list

samples.clear()

Read the
accelerometer

Prints the
accelerometer reading
on the console

accel.dump_ axes()

Calculate the
difference between
current reading and
previous reading

dx = now[@] - before[@]

If the difference
between readings is
more than the
sensitivity, sound
alarm

(dx) > SENS:
alarm()

